
                                Historical Perspective and Further 
Reading 

   Th is history section gives an overview of memory technologies, from mercury 
delay lines to DRAM, the invention of the memory hierarchy, and protection 
mechanisms, and concludes with a brief history of operating systems, including 
CTSS, MULTICS, UNIX, BSD UNIX, MS-DOS, Windows, and Linux. 

 Th e developments of most of the concepts in this chapter have been driven by 
revolutionary advances in the technology we use for memory. Before we discuss 
how memory hierarchies were evolved, let’s take a brief tour of the development of 
memory technology. 

 Th e ENIAC had only a small number of registers (about 20) for its storage and 
implemented these with the same basic vacuum tube technology that it used for 
building logic circuitry. However, the vacuum tube technology was far too expensive 
to be used to build a larger memory capacity. Eckert came up with the idea of 
developing a new technology based on mercury delay lines. In this technology, 
electrical signals were converted into vibrations that were sent down a tube of 
mercury, reaching the other end, where they were read out and recirculated. One 
mercury delay line could store about 0.5     Kbits. Although these bits were accessed 
serially, the mercury delay line was about a hundred times more cost-eff ective 
than vacuum tube memory. Th e fi rst known working mercury delay lines were 
developed at Cambridge for the EDSAC.  Figure 5.17.1    shows the mercury delay 
lines of the EDSAC, which had 32 tanks and 512 36-bit words. 

 Despite the tremendous advance off ered by the mercury delay lines, they were 
terribly unreliable and still rather expensive. Th e breakthrough came with the 
invention of core memory by J. Forrester at MIT as part of the Whirlwind project 
in the early 1950s (see  Figure 5.17.2   ). Core memory uses a ferrite core, which can 
be magnetized, and once magnetized, it acts as a store (just as a magnetic recording 
tape stores information). A set of wires running through the center of the core, 
which had a dimension of 0.1–1.0 millimeters, makes it possible to read the value 
stored on any ferrite core. Th e Whirlwind eventually included a core memory with 
2048 16-bit words, or 32     Kbits. Core memory was a tremendous advance: it was 
cheaper, faster, considerably more reliable, and had higher density. Core memory 
was so much better than the alternatives that it became the dominant memory 
technology only a few years aft er its invention and remained so for nearly 20 years. 

 …the one single 
development that put 
computers on their 
feet was the invention 
of a reliable form of 
memory, namely, the 
core memory.… Its 
cost was reasonable, 
it was reliable and, 
because it was reliable, 
it could in due course 
be made large. 
 Maurice Wilkes, 
 Memoirs of a Computer 
Pioneer , 1985 
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 FIGURE 5.17.1      The mercury delay lines in the EDSAC.     Th is technology made it possible to build 
the fi rst stored-program computer. Th e young engineer in this photograph is none other than Maurice 
Wilkes, the lead architect of the EDSAC.    
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 Th e technology that replaced core memory was the same one that we now use 
both for logic and for memory: the integrated circuit. While registers were built 
out of transistorized memory in the 1960s, and IBM computers used transistorized 
memory for microcode store and caches in 1970, building main memory out 
of transistors remained prohibitively expensive until the development of the 
integrated circuit. With the integrated circuit, it became possible to build a DRAM 
(dynamic random access memory—see Appendix A for a description). Th e fi rst 
DRAMs were built at Intel in 1970, and the computers using DRAM memories (as 
a high-speed option to core) came shortly thereaft er; they used 1     Kbit DRAMs. In 
fact, computer folklore says that Intel developed the microprocessor partly to help 

 FIGURE 5.17.2      A core memory plane from the Whirlwind containing 256 cores arranged in 
a 16   ×   16 array.     Core memory was invented for the Whirlwind, which was used for air defense problems, 
and is now on display at the Smithsonian. (Incidentally, Ken Olsen, the founder of Digital and its president 
for 20 years, built the computer that tested these core memories; it was his fi rst computer.)    
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sell more DRAM.  Figure 5.17.3    shows an early DRAM board. By the late 1970s, 
core memory had become a historical curiosity. Just as core memory technology 
had allowed a tremendous expansion in memory size, DRAM technology allowed 
a comparable expansion. In the 1990s, many personal computers had as much 
memory as the largest computers using core memory ever had. 

 Nowadays, DRAMs are typically packaged with multiple chips on a little board 
called a DIMM (dual inline memory module). Th e SIMM (single inline memory 
module) shown in  Figure 5.17.4    contains a total of 1     MB and sold for about $5 in 
1997. As of 2004, DIMMs were available with up to 1024     MB and sold for about 
$100. While DRAMs will remain the dominant memory technology for some 
time to come, innovations in the packaging of DRAMs to provide both higher 
bandwidth and greater density are ongoing. 

 FIGURE 5.17.3      An early DRAM board. This board uses 18     Kbit chips.    
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  The Development of Memory Hierarchies 
 Although the pioneers of computing foresaw the need for a   memory hierarchy   
and coined the term, the automatic management of two levels was fi rst proposed 
by Kilburn and his colleagues and demonstrated at the University of Manchester 
with the Atlas computer, which implemented virtual memory. Th is was the year 
 before  the IBM 360 was announced. IBM planned to include virtual memory with 
the next generation (System/370), but the OS/360 operating system wasn’t up to 
the challenge in 1970. Virtual memory was announced for the 370 family in 1972, 
and it was for this computer that the term  translation-lookaside buff er  was coined. 
All but some embedded computers use virtual memory today.     

 Th e problems of inadequate address space have plagued designers repeatedly. Th e 
architects of the PDP-11 identifi ed a small address space as the only architectural 
mistake from which it is diffi  cult to recover. When the PDP-11 was designed, core 
memory densities were increasing at a very slow rate, and the competition from 100 
other minicomputer companies meant that DEC might not have a cost-competitive 
product if every address had to go through the 16-bit datapath twice—hence, the 
decision to add just 4 more address bits than the predecessor of the PDP-11, to 16 
from 12. Th e architects of the IBM 360 were aware of the importance of address 
size and planned for the architecture to extend to 32 bits of address. Only 24 bits 
were used in the IBM 360, however, because the low-end 360 models would have 
been even slower with the larger addresses. Unfortunately, the expansion eff ort was 
greatly complicated by programmers who stored extra information in the upper 8 

 FIGURE 5.17.4      A 1     MB SIMM, built in 1986, using 1     Mbit chips.     Th is SIMM sold for about $5/
MB in 1997. As of 2006, most main memory is packed in DIMMs similar to this, though using much higher-
density memory chips (1     Gbit).    
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“unused” address bits. Th e wider address lasted until 2000, when IBM expanded 
the architecture to 64 bits in the z-series. 

 Running out of address space has oft en been the cause of death for an 
architecture, while other architectures have managed to make the transition to a 
larger address space. For example, the PDP-11, a 16-bit computer, was replaced by 
the 32-bit VAX. Th e 80386 extended the 80286 architecture from a segmented 24-
bit address space to a fl at 32-bit address space in 1985. In the 1990s, several RISC 
instruction sets made the transition from 32-bit addressing to 64-bit addressing 
by providing a compatible extension of their instruction sets. MIPS was the fi rst to 
do so. A decade later, Intel and HP announced the IA-64 in large part to provide a 
64-bit address successor to the 32-bit Intel IA-32 and HP Precision architectures. 
Th e evolutionary AMD64 won that battle versus the revolutionary IA-64, and all 
but a few thousand of the 64-bit address computers from Intel are based on the x86. 

 Many of the early ideas in memory hierarchies originated in England. Just a few 
years aft er the Atlas paper,  Wilkes [1965]  published the fi rst paper describing the 
concept of a cache, calling it a “slave”:

  Th e use is discussed of a fast core memory of, say, 32,000 words as slave to a slower 
core memory of, say, one million words in such a way that in practical cases the 
eff ective access time is nearer that of the fast memory than that of the slow memory.   

 Th is two-page paper describes a direct-mapped cache. Although this was the fi rst 
publication on caches, the fi rst implementation was probably a direct-mapped 
instruction cache built at the University of Cambridge by Scarrott and described at 
the 1965 IFIP Congress. It was based on tunnel diode memory, the fastest form of 
memory available at the time. 

 Subsequent to that publication, IBM started a project that led to the fi rst 
commercial computer with a cache, the IBM 360/85. Gibson at IBM recognized 
that memory-accessing behavior would have a signifi cant impact on performance. 
He described how to measure program behavior and cache behavior and showed 
that the miss rate varies between programs. Using a sample of 20 programs (each 
with 3 million references—an incredible number for that time), Gibson analyzed 
the eff ectiveness of caches using average memory access time as the metric. Conti, 
Gibson, and Pitowsky described the resulting performance of the 360/85 in the fi rst 
paper to use the term  cache  in 1968. Since this early work, it has become clear that 
caches are one of the most important ideas not only in computer architecture but 
in soft ware systems as well. Th e idea of caching has found applications in operating 
systems, networking systems, databases, and compilers, to name a few. Th ere are 
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thousands of papers on the topic of caching, and it continues to be a popular area 
of research. 

 One of the fi rst papers on nonblocking caches was by Kroft  in 1981, who may 
have coined the term. He later explained that he was the fi rst to design a computer 
with a cache at Control Data Corporation, and when using old concepts for new 
mechanisms, he hit upon the idea of allowing his two-ported cache to continue to 
service other accesses on a miss. 

 Multilevel caches were the inevitable resolution to the lack of improvement in 
main memory latency and the higher clock rates of microprocessors. Only those in 
the fi eld for a while are surprised by the size of some second- or third-level caches, as 
they are larger than main memories of past machines. Th e other surprise is that the 
number of levels is continually increasing, even on a single-chip microprocessor. 

   Disk Storage 
 In 1956, IBM developed the fi rst disk storage system with both moving heads 
and multiple disk surfaces in San Jose, helping to seed the birth of the magnetic 
storage industry in the southern end of Silicon Valley. Reynold B. Johnson led the 
development of the IBM 305 RAMAC (Random Access Method of Accounting 
and Control). It could store 5 million characters (5     MB) of data on 50 disks, each 24 
inches in diameter. Th e RAMAC is shown in  Figures 5.17.5 and 5.17.6     . Although 
the disk pioneers would be amazed at the size, cost, and capacity of modern disks, 
the basic mechanical design is the same as the RAMAC. 

 Moving-head disks quickly became the dominant high-speed magnetic storage, 
though their high cost meant that magnetic tape continued to be used extensively 
until the 1970s. Th e next key milestone for hard disks was the removable hard 
disk drive developed by IBM in 1962; this made it possible to share the expensive 
drive electronics and helped disks overtake tapes as the preferred storage medium. 
 Figure 5.17.7    shows a removable disk drive and the multiplatter disk used in the 
drive. IBM also invented the fl oppy disk drive in 1970, originally to hold microcode 
for the IBM 370 series. Floppy disks became popular with the PC about 10 years 
later. 

 Th e sealed Winchester disk, which was developed by IBM in 1973, completely 
dominates disk technology today. Winchester disks benefi ted from two related 
properties. First, reductions in the cost of the disk electronics made it unnecessary 
to share the electronics and thus made nonremovable disks economical. Since the 
disk was fi xed and could be in a sealed enclosure, both the environmental and 
control problems were greatly reduced, allowing signifi cant gains in density. Th e 
fi rst disk that IBM shipped had two spindles, each with a 30     MB disk; the moniker 
“30-30” for the disk led to the name Winchester. Winchester disks grew rapidly in 
popularity in the 1980s, completely replacing removable disks by the middle of that 
decade. 

 Th e historic role of IBM in the disk industry came to an end in 2002, when IBM 
sold its disk storage division to Hitachi. IBM continues to make storage subsystems, 
but it purchases its disk drives from others. 
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 FIGURE 5.17.5      A magnetic drum made by Digital Development Corporation in the 1960s 
and used on a CDC machine.     Th e electronics supporting the read/write heads can be seen on the outside 
of the drum.    

   A Very Brief History of Flash Memory 
 Flash memory was invented by researchers at Toshiba in the 1980s. Th ey invented 
both the NOR-based Flash memory in 1984 and the denser NAND-based Flash 
memory in 1989. Th e fi rst use was in digital cameras, starting with the CompactFlash 
form factor for NOR Flash memory and the SmartMedia form factor for NAND 
Flash memory. Today, all digital cameras, cell phones, music players, and tablets 
rely on Flash memory, and an increasing fraction of laptops use fl ash memory 
instead of disk. 
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   A Brief History of Databases 
 Although there had been data stores of punch cards and later magnetic tapes, the 
emergence of the magnetic disk led to modern databases. 

 In 1961, Charles Bachman at General Electric created a pioneering database 
management system called Integrated Data Store (IDS) to take advantage of the 
new magnetic disks. In 1971, Bachman and others published standards on how 
to manage databases using Cobol programs, named the Codasyl approach aft er 

 FIGURE 5.17.6      The RAMAC disk drive from IBM, made in 1956, was the fi rst disk drive 
with a moving head and the fi rst with multiple platters.     Th e IBM storage technology Web site has 
a discussion of IBM’s major contributions to storage technology.    

 FIGURE 5.17.7      This is a DEC disk drive and the removable pack.     Th ese disks became popular 
starting in the mid-1960s and dominated disk technology until Winchester drives in the late 1970s. Th is drive 
was made in the mid-1970s; each disk pack in this drive could hold 80     MB.    
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the standards committee on which they served. Many companies off ered Codasyl-
compatible databases, but not IBM. IBM had introduced IMS in 1968, which was 
derived from IBM’s work on the NASA Apollo project. Both Codasyl databases 
and IMS are classifi ed as navigational databases because programs had to navigate 
through the data. 

 Ted Codd, a researcher at IBM, thought the navigational approach was wrong-
headed. He recalled that people didn’t write programs when dealing with the old 
punch card databases. Instead, they set up data fl ows through series of punch card 
machines that would perform simple functions like copy or sort. Once the card 
machines were set up, you just pushed all the cards through to get your results. 
In his view, users should only declare the type of data they were looking for and 
leave it up to computers to process it. In 1970, he published a new way to organize 
and access data called the relational model. It was based on set theory; data were 
independent of the implementation and users described what they were looking 
for in a declarative, nonprocedural language. 

 Th is paper led to considerable controversy within IBM, because it already had a 
database product. Codd even arranged a public debate between him and Bachman, 
which led to internal criticism at IBM that Codd was undermining IMS. Th e 
good news was that the debate led researchers at IBM and U.C. Berkeley to try to 
demonstrate the viability of relational databases by building System R and Ingres. 

 System R in 1974–79 demonstrated its feasibility and, perhaps more importantly, 
created the Structured Query Language (SQL) that is still widely used today. 
However, these results were not suffi  cient to convince IBM, and some of the 
researchers left  IBM to build relational databases for other companies. 

 Mike Stonebraker and Gene Wong were interested in geographic data systems, 
and in 1973 they decided to pursue relational databases. Rather than build on IBM 
mainframes, the Ingres project was built on DEC minicomputers and Unix. Ingres 
was important because it led to a company that tried to commercialize the ideas, 
because 1000 copies of its source code were openly distributed, and because it 
trained a generation of database developers and researchers. Th e code and people 
led to many other companies, including Sybase. Larry Ellison started Oracle by 
fi rst reading the papers from the System R and Ingres groups and then by hiring 
people who worked on those projects. Microsoft  later purchased a copy of Sybase 
sources that became the foundation of its SQL Server product. 

 Relational databases matured in the 1980s, with IBM developing its own 
relational databases, including DB2. Th e 1990s saw both the development of 
object-oriented databases, to address the impedance mismatch between databases 
and programming, and the evolution of parallel databases for analytic processing 
and data mining. 

 ACM showered awards on this community. Th e ACM Turing Award went to 
Charles Bachman in 1973 for his contributions via IDS and the Codasyl group. 
Codd won it in 1980 for the relational model. In 1988, the developers of System 
R (Donald Chamberlin, Jim Gray, Raymond Lorie, Gianfranco Putzolu, Patricia 
Selinger, and Irving Traiger) shared the ACM Systems Soft ware Award with the 
developers of Ingres (Gerald Held, Michael Stonebraker, and Eugene Wong). Jim 
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Gray won the Turing Award in 1998 for his contributions to transaction processing 
and databases. Stonebraker won it in 2014 for contributions to the concepts 
and practices underlying modern database systems. Finally, the fi rst two ACM 
SIGMOD Innovations Awards went to Stonebraker and Gray, and the 2002 and 
2003 editions went to Selinger and Chamberlin. 

   RAID 
 Th e small-form-factor hard disks for PCs in the mid-1980s led a group at Berkeley 
to propose redundant arrays of inexpensive disks (RAID). Th is group had worked 
on the reduced instruction set computer eff ort and so expected much faster 
processors to become available. Th eir two questions were: What could be done 
with the small disks that accompanied their PCs? What could be done in the area 
of I/O to keep up with much faster processors? Th ey argued to replace one large 
mainframe drive with 50 small drives, as you could get much greater performance 
with that many independent arms. Th e many small drives even off ered savings in 
power consumption and fl oor space. 

 Th e downside of many disks was much lower MTTF. Hence, on their own they 
reasoned out the advantages of redundant disks and rotating parity to address how 
to get greater performance with many small drives yet have reliability as high as 
that of a single mainframe disk. 

 Th e problem they experienced when explaining their ideas was that some 
researchers had heard of disk arrays with some form of redundancy, and they didn’t 
understand the Berkeley proposal. Hence, the fi rst RAID paper [Patterson, Gibson, 
and Katz 1987] is not only a case for arrays of small-form-factor disk drives, but 
also something of a tutorial and classifi cation of existing work on disk arrays. 
Mirroring (RAID 1) had long been used in fault-tolerant computers such as those 
sold by Tandem. Th inking Machines had arrays with 32 data disks and seven check 
disks using ECC for correction (RAID 2) in 1987, and Honeywell Bull had a RAID 
2 product even earlier. Also, disk arrays with a single parity disk had been used in 
scientifi c computers in the same time frame (RAID 3). Th eir paper then described 
a single parity disk with support for sector accesses (RAID 4) and rotated parity 
(RAID 5).  Chen et al. [1994]  survey the original RAID ideas, commercial products, 
and other developments. 

 Unknown to the Berkeley group, engineers at IBM working on the AS/400 
computer also came up with rotated parity to give greater reliability for a collection of 
large disks. IBM fi led a patent on RAID 5 shortly before the Berkeley group submitted 
their paper. Patents for RAID 1, RAID 2, and RAID 3 from several companies predate 
the IBM RAID 5 patent, which has led to plenty of courtroom action. 

 EMC had been a supplier of DRAM boards for IBM computers, but around 1988 
new policies from IBM made it nearly impossible for EMC to continue to sell IBM 
memory boards. Th e Berkeley paper crossed the desks of EMC executives, and so 
they decided to go aft er the market dominated by IBM disk storage products. As 
the paper advocated, their model was to use many small drives to compete with 
mainframe drives, and EMC announced a RAID product in 1990. It relied on 
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mirroring (RAID 1) for reliability; RAID 5 products came much later for EMC. 
Over the next year, Micropolis off ered a RAID 3 product; Compaq off ered a RAID 
4 product; and Data General, IBM, and NCR off ered RAID 5 products. 

 Th e RAID ideas soon spread to the rest of the workstation and server industry. 
An article explaining RAID in  Byte  magazine led to RAID products being off ered 
on desktop PCs, which was something of a surprise to the Berkeley group. Th ey 
had focused on performance with good availability, but higher availability was 
attractive to the PC market. 

 Another surprise was the cost of the disk arrays. With redundant power supplies 
and fans, the ability to “hot-swap” a disk drive, the RAID hardware controller itself, 
the redundant disks, and so on, the fi rst disk arrays cost many times the cost of the 
disks. Perhaps as a result, the “inexpensive” in RAID morphed into “independent.” 
Many marketing departments and technical writers today know of RAID only as 
“redundant arrays of independent disks.” 

 In 2004, more than 80% of the nondesktop drive sales were found in RAIDs. In 
recognition of their role, in 1999 Garth Gibson, Randy Katz, and David Patterson 
received the IEEE Reynold B. Johnson Information Storage Award “for the 
development of Redundant Arrays of Inexpensive Disks (RAID).” 

   Protection Mechanisms 
 Architectural support for protection has varied greatly over the past 20 years. In early 
computers, before virtual memory, protection was very simple at best. In the 1960s, 
more sophisticated mechanisms that supported diff erent protection levels (called 
 rings ) were invented. In the late 1970s and early 1980s, very elaborate mechanisms 
for protection were devised and later built; these mechanisms supported a variety 
of powerful protection schemes that allowed controlled instances of sharing, in 
such a way that a process could share data while controlling exactly what was done 
to the data. Th e most powerful method, called  capabilities , created a data object that 
described the access rights to some portion of memory. Th ese capabilities could 
then be passed to other processes, thus granting access to the object described by the 
capability. Supporting this sophisticated protection mechanism was both complex 
and costly, because creation, copying, and manipulation of capabilities required 
a combination of operating system and hardware support. Recent computers all 
support a simpler protection scheme based on virtual memory, similar to that 
discussed in Section 5.7. Given current concerns about computer security due to 
the costs of worms and viruses, perhaps we will see a renaissance in protection 
research, potentially renewing interest in 20-year-old publications. 

 As mentioned in the text, system virtual machines were pioneered at IBM as part 
of its investigation into virtual memory. IBM’s fi rst computer with virtual memory 
was the IBM 360/67, introduced in 1967. IBM researchers wrote the program CP-
67, which created the illusion of several independent 360 computers. Th ey then 
wrote an interactive, single-user operating system called CMS that ran on these 
virtual machines. CP-67 led to the product VM/370, and today IBM sells z/VM for 
its mainframe computers. 
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   A Brief History of Modern Operating Systems 
 MIT developed the fi rst timesharing system, CTSS (Compatible Time-Sharing 
System), in 1961. John McCarthy is generally given credit for the idea of timesharing, 
but Fernando Corbato was the systems person who realized the concept in the 
form of the CTSS. CTSS allowed three people to share a machine, and its response 
time of minutes or seconds was a dramatic improvement over the batch processing 
system it replaced. Moreover, it demonstrated the value of interactive computing. 

 Flush with the success of their fi rst system, this group launched into their second 
system, MULTICS (Multiplexed Information and Computing Service). Th ey 
included many innovations, such as strong protection, controlled sharing, and 
dynamic libraries. However, it suff ered from the “second system eff ect.” Fred Brooks, 
Jr. described the second system eff ect in his classic book about lessons learned from 
developing an operating system for the IBM mainframe,  Th e Mythical Man Month: 

  When one is designing the successor to a relatively small, elegant, and successful 
system, there is a tendency to become grandiose in one’s success and design an 
elephantine feature-laden monstrosity.   

 MULTICS took sharing to a logical extreme to discover the issues, including that 
it was too extreme. MIT, General Electric, and later Bell Labs all tried to build an 
economical and useful system. Despite a great deal of time and money, they failed. 

 UC Berkeley was building its own timesharing system, Cal TSS. (“Cal” is a 
nickname for University of California.) Th e people leading that project included 
Peter Deutsch, Butler Lampson, Chuck Th acker, and Ken Th ompson. Th ey added 
paging virtual memory hardware to an SDS 920 and wrote an operating system 
for it. SDS sold this computer as the SDS-930, and it was the fi rst commercially 
available timesharing system to have operational hardware and soft ware. 
Th ompson graduated and joined Bell Labs. Th e others founded Berkeley Computer 
Corporation (BCC), with the goal of selling time-sharing hardware and soft ware. 
We’ll pick up BCC later in the story, but for now let’s follow Th ompson. 

 At Bell Labs in 1971, Th ompson led the development of a simple timesharing 
system that had some of the good ideas of MULTICS but left  out many of the 
complex features. To demonstrate the contrast, it was fi rst called UNICS. As they 
were joined by others at Bell Labs who had been burned from the MULTICS 
experience, it was renamed UNIX, with the  x  coming from Phoenix, the legendary 
bird that rose from the ashes. 

 Th eir result was the most elegant operating system ever built. Forced to live in 
the 16-bit address space of the DEC minicomputers, it had an amazing amount 
of functionality per line of code. Major contributions were pipes, a uniform fi le 
system, a uniform process model, and the shell user interface that allowed users to 
connect programs together using pipes and fi les. 

 Dennis Ritchie joined the UNIX team in 1973 from MIT, where he had 
experience in MULTICS, which was written in a high-level language. Like prior 
operating systems, UNIX had been written in assembly language. Ritchie designed 
a language for system implementation called C, and it was used to make UNIX 
portable. 
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 Between 1971 and 1976, Bell released six editions of the UNIX timesharing 
system. Th ompson took a sabbatical at his alma mater and brought UNIX with 
him. Berkeley and many other universities began to use UNIX on the popular 
PDP-11 minicomputer. 

 When DEC announced the VAX, a 32-bit virtual address successor to the PDP-
11, the question arose as to what operating system should be run. UNIX became 
the fi rst operating system to be migrated to a diff erent computer when it was ported 
to the VAX. 

 Students at Berkeley had one of the fi rst VAXes, and they were soon adding 
features to UNIX for the VAX, such as paging and a very effi  cient implementation 
of the TCP/IP protocol. Th e Berkeley implementation of TCP/IP was notable not 
just because it was fast. It was essentially the  only  implementation of TCP/IP for 
years, since early implementations in most other operating systems consisted of 
copying the Berkeley code verbatim, with minimal changes to integrate into the 
local system. 

 Th e Advanced Research Project Agency (ARPA), which funded computer 
science research, asked a Stanford professor, Forrest Basket, to recommend which 
system the academic community should use: the DEC operating system VMS, 
led by David Cutler, or the Berkeley version of UNIX, led by a graduate student 
named Bill Joy. He recommended the latter, and Berkeley UNIX soon became the 
academic standard bearer. 

 Th e Berkeley Soft ware Distribution (BSD) of UNIX, fi rst released in 1978, was 
essentially one of the fi rst open source movements. Th e sources were shipped with 
the tapes, and systems developers around the world learned their craft  by studying 
the UNIX code. 

 BSD was also the fi rst split of UNIX, because AT&T Bell Labs continued to 
develop UNIX on its own. Th is eventually led to a forest of UNIXes, as each 
company compiled the UNIX source code for their architecture. Bill Joy graduated 
from Berkeley and helped found Sun Microsystems, so naturally Sun OS was based 
on BSD UNIX. Among the many UNIX fl avors were Santa Cruz Operation UNIX, 
HP-UX, and IBM’s AIX. AT&T and Sun attempted to unify UNIX by striking a 
deal whereby AT&T and Sun would combine forces and jointly develop AT&T 
UNIX. Th is led to an adverse reaction from HP, IBM, and others, because they 
did not want a competitor supplying their code, so they created the Open Source 
Foundation as a competing organization. 

 In addition to the UNIX variants from companies, public domain versions also 
proliferated. Th e BSD team at Berkeley rewrote substantial portions of UNIX so 
that they could distribute it without needing a license from AT&T. Th is eventually 
led to a lawsuit, which Berkeley won. BSD UNIX soon split into FreeBSD, NetBSD, 
and OpenBSD, provided by competing camps of developers. Apple’s current 
operating system, OS X, is based on Free BSD. 

 Let’s go back to Berkeley Computer Corporation. Alas, this eff ort was not 
commercially viable. About the same time as BCC was getting in trouble, Xerox hired 
Robert Taylor to build the computer science division of the new Xerox Palo Alto 
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Research Center (PARC) in 1970. He had just returned from a tour of duty at ARPA, 
where he had funded the Berkeley research. He recruited Deutsch, Lampson, and 
Th acker from BCC to form the core of PARC’s team: 11 of the initial 20 employees 
were from BCC, and they decided to build small computers for individuals rather 
than large computers for groups. Th is fi rst personal computer, called the Alto, was 
built from the same technology as minicomputers, but it had a keyboard, mouse, 
graphical display, and windows. It popularized windows and led to many inventions, 
including client-server computing, the Ethernet, and print servers. It directly inspired 
the Macintosh, which was the successor to the popular Apple II. 

 IBM had long been interested in selling to the home, so the success of the Apple 
II led IBM to start a competing project. In contrast to its tradition, for this project 
IBM designed everything from components outside of the company. Th ey selected 
the new 16-bit microprocessor from Intel, the 8086. (To lower costs, they started 
with the version with the 8-bit bus, called the 8088.) Th ey visited Microsoft  to 
see if this small company would be willing to sell their popular Basic interpreter 
and asked for recommendations for an operating system. Gates volunteered that 
Microsoft  could deliver both an interpreter and an operating system, as long as they 
were paid a royalty fee of between $10 and $50 for each copy rather than a fl at fee. 
IBM agreed, provided Microsoft  could meet their deadlines. Microsoft  didn’t have 
an operating system, nor the time and resources to build one, but Gates knew that 
a Seattle company had developed an operating system for the Intel 8086. Microsoft  
purchased QDOS (Quick and Dirty Operating System) for $15,000, made a small 
change and relabeled it MS-DOS. MS-DOS was a simple operating system without 
any modern features—no protection, no processes, and no virtual memory—in 
part because they believed it wasn’t necessary for a personal computer. 

 Announced in 1980, the IBM PC became a tremendous success for IBM and the 
companies it relied upon. Microsoft  sold 500,000 copies of MS-DOS by 1983, and 
the $10 million income allowed Microsoft  to start new soft ware projects. 

 Aft er seeing a version of the Macintosh under development, Microsoft  hired 
some people from PARC to lead its reply. Th e Macintosh was announced in 
1984, and Windows was available on PCs the following year. It was originally 
an application that ran on top of DOS, but was later integrated with DOS and 
renamed Windows 2.0. Microsoft  hired Cutler from DEC to lead the development 
of Windows NT, a new operating system. NT was a modern operating system with 
protection, processors, and so on and has much in common with DEC’s VMS. 
Today’s PC operating systems are more sophisticated than any of the timesharing 
systems of 20 years ago, yet they still suff er from the need to maintain compatibility 
with the crippled fi rst PC operating systems such as MS-DOS. 

 Th e popularity of the PC led to a desire for a UNIX that ran on it. Many tried 
to develop one, but the most successful was written from scratch in 1991 by Linus 
Torvalds. In addition to making the source code available, like BSD, he allowed 
everyone to make changes and submit them for inclusion in his next release. Linux 
popularized open source development as we know it today, with such soft ware 
getting hundreds of volunteers to test releases and add new features. 
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 Many people in this story won awards for their roles in the development of 
modern operating systems. McCarthy received an ACM Turing Award in 1971 in 
part for his contributions to timesharing. In 1983, Th ompson and Ritchie received 
one for UNIX. Th e announcement said that “the genius of the UNIX system is its 
framework, which enables programmers to stand on the work of others.” In 1990, 
Corbato received the Turing Award for his contributions to CTSS and MULTICS. 
Two years later, Lampson won it in part for his work on personal computing and 
operating systems. 
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