
 Historical Perspective and Further
Reading

 Th is history section gives an overview of memory technologies, from mercury
delay lines to DRAM, the invention of the memory hierarchy, and protection
mechanisms, and concludes with a brief history of operating systems, including
CTSS, MULTICS, UNIX, BSD UNIX, MS-DOS, Windows, and Linux.

 Th e developments of most of the concepts in this chapter have been driven by
revolutionary advances in the technology we use for memory. Before we discuss
how memory hierarchies were evolved, let’s take a brief tour of the development of
memory technology.

 Th e ENIAC had only a small number of registers (about 20) for its storage and
implemented these with the same basic vacuum tube technology that it used for
building logic circuitry. However, the vacuum tube technology was far too expensive
to be used to build a larger memory capacity. Eckert came up with the idea of
developing a new technology based on mercury delay lines. In this technology,
electrical signals were converted into vibrations that were sent down a tube of
mercury, reaching the other end, where they were read out and recirculated. One
mercury delay line could store about 0.5 Kbits. Although these bits were accessed
serially, the mercury delay line was about a hundred times more cost-eff ective
than vacuum tube memory. Th e fi rst known working mercury delay lines were
developed at Cambridge for the EDSAC. Figure 5.17.1 shows the mercury delay
lines of the EDSAC, which had 32 tanks and 512 36-bit words.

 Despite the tremendous advance off ered by the mercury delay lines, they were
terribly unreliable and still rather expensive. Th e breakthrough came with the
invention of core memory by J. Forrester at MIT as part of the Whirlwind project
in the early 1950s (see Figure 5.17.2). Core memory uses a ferrite core, which can
be magnetized, and once magnetized, it acts as a store (just as a magnetic recording
tape stores information). A set of wires running through the center of the core,
which had a dimension of 0.1–1.0 millimeters, makes it possible to read the value
stored on any ferrite core. Th e Whirlwind eventually included a core memory with
2048 16-bit words, or 32 Kbits. Core memory was a tremendous advance: it was
cheaper, faster, considerably more reliable, and had higher density. Core memory
was so much better than the alternatives that it became the dominant memory
technology only a few years aft er its invention and remained so for nearly 20 years.

 …the one single
development that put
computers on their
feet was the invention
of a reliable form of
memory, namely, the
core memory.… Its
cost was reasonable,
it was reliable and,
because it was reliable,
it could in due course
be made large.
 Maurice Wilkes,
 Memoirs of a Computer
Pioneer , 1985

5.17

 5.17 Historical Perspective and Further Reading 5.17-3

 FIGURE 5.17.1 The mercury delay lines in the EDSAC. Th is technology made it possible to build
the fi rst stored-program computer. Th e young engineer in this photograph is none other than Maurice
Wilkes, the lead architect of the EDSAC.

5.17-4 5.17 Historical Perspective and Further Reading

 Th e technology that replaced core memory was the same one that we now use
both for logic and for memory: the integrated circuit. While registers were built
out of transistorized memory in the 1960s, and IBM computers used transistorized
memory for microcode store and caches in 1970, building main memory out
of transistors remained prohibitively expensive until the development of the
integrated circuit. With the integrated circuit, it became possible to build a DRAM
(dynamic random access memory—see Appendix A for a description). Th e fi rst
DRAMs were built at Intel in 1970, and the computers using DRAM memories (as
a high-speed option to core) came shortly thereaft er; they used 1 Kbit DRAMs. In
fact, computer folklore says that Intel developed the microprocessor partly to help

 FIGURE 5.17.2 A core memory plane from the Whirlwind containing 256 cores arranged in
a 16 × 16 array. Core memory was invented for the Whirlwind, which was used for air defense problems,
and is now on display at the Smithsonian. (Incidentally, Ken Olsen, the founder of Digital and its president
for 20 years, built the computer that tested these core memories; it was his fi rst computer.)

 5.17 Historical Perspective and Further Reading 5.17-5

sell more DRAM. Figure 5.17.3 shows an early DRAM board. By the late 1970s,
core memory had become a historical curiosity. Just as core memory technology
had allowed a tremendous expansion in memory size, DRAM technology allowed
a comparable expansion. In the 1990s, many personal computers had as much
memory as the largest computers using core memory ever had.

 Nowadays, DRAMs are typically packaged with multiple chips on a little board
called a DIMM (dual inline memory module). Th e SIMM (single inline memory
module) shown in Figure 5.17.4 contains a total of 1 MB and sold for about $5 in
1997. As of 2004, DIMMs were available with up to 1024 MB and sold for about
$100. While DRAMs will remain the dominant memory technology for some
time to come, innovations in the packaging of DRAMs to provide both higher
bandwidth and greater density are ongoing.

 FIGURE 5.17.3 An early DRAM board. This board uses 18 Kbit chips.

5.17-6 5.17 Historical Perspective and Further Reading

 The Development of Memory Hierarchies
 Although the pioneers of computing foresaw the need for a memory hierarchy
and coined the term, the automatic management of two levels was fi rst proposed
by Kilburn and his colleagues and demonstrated at the University of Manchester
with the Atlas computer, which implemented virtual memory. Th is was the year
 before the IBM 360 was announced. IBM planned to include virtual memory with
the next generation (System/370), but the OS/360 operating system wasn’t up to
the challenge in 1970. Virtual memory was announced for the 370 family in 1972,
and it was for this computer that the term translation-lookaside buff er was coined.
All but some embedded computers use virtual memory today.

 Th e problems of inadequate address space have plagued designers repeatedly. Th e
architects of the PDP-11 identifi ed a small address space as the only architectural
mistake from which it is diffi cult to recover. When the PDP-11 was designed, core
memory densities were increasing at a very slow rate, and the competition from 100
other minicomputer companies meant that DEC might not have a cost-competitive
product if every address had to go through the 16-bit datapath twice—hence, the
decision to add just 4 more address bits than the predecessor of the PDP-11, to 16
from 12. Th e architects of the IBM 360 were aware of the importance of address
size and planned for the architecture to extend to 32 bits of address. Only 24 bits
were used in the IBM 360, however, because the low-end 360 models would have
been even slower with the larger addresses. Unfortunately, the expansion eff ort was
greatly complicated by programmers who stored extra information in the upper 8

 FIGURE 5.17.4 A 1 MB SIMM, built in 1986, using 1 Mbit chips. Th is SIMM sold for about $5/
MB in 1997. As of 2006, most main memory is packed in DIMMs similar to this, though using much higher-
density memory chips (1 Gbit).

 5.17 Historical Perspective and Further Reading 5.17-7

“unused” address bits. Th e wider address lasted until 2000, when IBM expanded
the architecture to 64 bits in the z-series.

 Running out of address space has oft en been the cause of death for an
architecture, while other architectures have managed to make the transition to a
larger address space. For example, the PDP-11, a 16-bit computer, was replaced by
the 32-bit VAX. Th e 80386 extended the 80286 architecture from a segmented 24-
bit address space to a fl at 32-bit address space in 1985. In the 1990s, several RISC
instruction sets made the transition from 32-bit addressing to 64-bit addressing
by providing a compatible extension of their instruction sets. MIPS was the fi rst to
do so. A decade later, Intel and HP announced the IA-64 in large part to provide a
64-bit address successor to the 32-bit Intel IA-32 and HP Precision architectures.
Th e evolutionary AMD64 won that battle versus the revolutionary IA-64, and all
but a few thousand of the 64-bit address computers from Intel are based on the x86.

 Many of the early ideas in memory hierarchies originated in England. Just a few
years aft er the Atlas paper, Wilkes [1965] published the fi rst paper describing the
concept of a cache, calling it a “slave”:

 Th e use is discussed of a fast core memory of, say, 32,000 words as slave to a slower
core memory of, say, one million words in such a way that in practical cases the
eff ective access time is nearer that of the fast memory than that of the slow memory.

 Th is two-page paper describes a direct-mapped cache. Although this was the fi rst
publication on caches, the fi rst implementation was probably a direct-mapped
instruction cache built at the University of Cambridge by Scarrott and described at
the 1965 IFIP Congress. It was based on tunnel diode memory, the fastest form of
memory available at the time.

 Subsequent to that publication, IBM started a project that led to the fi rst
commercial computer with a cache, the IBM 360/85. Gibson at IBM recognized
that memory-accessing behavior would have a signifi cant impact on performance.
He described how to measure program behavior and cache behavior and showed
that the miss rate varies between programs. Using a sample of 20 programs (each
with 3 million references—an incredible number for that time), Gibson analyzed
the eff ectiveness of caches using average memory access time as the metric. Conti,
Gibson, and Pitowsky described the resulting performance of the 360/85 in the fi rst
paper to use the term cache in 1968. Since this early work, it has become clear that
caches are one of the most important ideas not only in computer architecture but
in soft ware systems as well. Th e idea of caching has found applications in operating
systems, networking systems, databases, and compilers, to name a few. Th ere are

5.17-8 5.17 Historical Perspective and Further Reading

thousands of papers on the topic of caching, and it continues to be a popular area
of research.

 One of the fi rst papers on nonblocking caches was by Kroft in 1981, who may
have coined the term. He later explained that he was the fi rst to design a computer
with a cache at Control Data Corporation, and when using old concepts for new
mechanisms, he hit upon the idea of allowing his two-ported cache to continue to
service other accesses on a miss.

 Multilevel caches were the inevitable resolution to the lack of improvement in
main memory latency and the higher clock rates of microprocessors. Only those in
the fi eld for a while are surprised by the size of some second- or third-level caches, as
they are larger than main memories of past machines. Th e other surprise is that the
number of levels is continually increasing, even on a single-chip microprocessor.

 Disk Storage
 In 1956, IBM developed the fi rst disk storage system with both moving heads
and multiple disk surfaces in San Jose, helping to seed the birth of the magnetic
storage industry in the southern end of Silicon Valley. Reynold B. Johnson led the
development of the IBM 305 RAMAC (Random Access Method of Accounting
and Control). It could store 5 million characters (5 MB) of data on 50 disks, each 24
inches in diameter. Th e RAMAC is shown in Figures 5.17.5 and 5.17.6 . Although
the disk pioneers would be amazed at the size, cost, and capacity of modern disks,
the basic mechanical design is the same as the RAMAC.

 Moving-head disks quickly became the dominant high-speed magnetic storage,
though their high cost meant that magnetic tape continued to be used extensively
until the 1970s. Th e next key milestone for hard disks was the removable hard
disk drive developed by IBM in 1962; this made it possible to share the expensive
drive electronics and helped disks overtake tapes as the preferred storage medium.
 Figure 5.17.7 shows a removable disk drive and the multiplatter disk used in the
drive. IBM also invented the fl oppy disk drive in 1970, originally to hold microcode
for the IBM 370 series. Floppy disks became popular with the PC about 10 years
later.

 Th e sealed Winchester disk, which was developed by IBM in 1973, completely
dominates disk technology today. Winchester disks benefi ted from two related
properties. First, reductions in the cost of the disk electronics made it unnecessary
to share the electronics and thus made nonremovable disks economical. Since the
disk was fi xed and could be in a sealed enclosure, both the environmental and
control problems were greatly reduced, allowing signifi cant gains in density. Th e
fi rst disk that IBM shipped had two spindles, each with a 30 MB disk; the moniker
“30-30” for the disk led to the name Winchester. Winchester disks grew rapidly in
popularity in the 1980s, completely replacing removable disks by the middle of that
decade.

 Th e historic role of IBM in the disk industry came to an end in 2002, when IBM
sold its disk storage division to Hitachi. IBM continues to make storage subsystems,
but it purchases its disk drives from others.

 5.17 Historical Perspective and Further Reading 5.17-9

 FIGURE 5.17.5 A magnetic drum made by Digital Development Corporation in the 1960s
and used on a CDC machine. Th e electronics supporting the read/write heads can be seen on the outside
of the drum.

 A Very Brief History of Flash Memory
 Flash memory was invented by researchers at Toshiba in the 1980s. Th ey invented
both the NOR-based Flash memory in 1984 and the denser NAND-based Flash
memory in 1989. Th e fi rst use was in digital cameras, starting with the CompactFlash
form factor for NOR Flash memory and the SmartMedia form factor for NAND
Flash memory. Today, all digital cameras, cell phones, music players, and tablets
rely on Flash memory, and an increasing fraction of laptops use fl ash memory
instead of disk.

5.17-10 5.17 Historical Perspective and Further Reading

 A Brief History of Databases
 Although there had been data stores of punch cards and later magnetic tapes, the
emergence of the magnetic disk led to modern databases.

 In 1961, Charles Bachman at General Electric created a pioneering database
management system called Integrated Data Store (IDS) to take advantage of the
new magnetic disks. In 1971, Bachman and others published standards on how
to manage databases using Cobol programs, named the Codasyl approach aft er

 FIGURE 5.17.6 The RAMAC disk drive from IBM, made in 1956, was the fi rst disk drive
with a moving head and the fi rst with multiple platters. Th e IBM storage technology Web site has
a discussion of IBM’s major contributions to storage technology.

 FIGURE 5.17.7 This is a DEC disk drive and the removable pack. Th ese disks became popular
starting in the mid-1960s and dominated disk technology until Winchester drives in the late 1970s. Th is drive
was made in the mid-1970s; each disk pack in this drive could hold 80 MB.

 5.17 Historical Perspective and Further Reading 5.17-11

the standards committee on which they served. Many companies off ered Codasyl-
compatible databases, but not IBM. IBM had introduced IMS in 1968, which was
derived from IBM’s work on the NASA Apollo project. Both Codasyl databases
and IMS are classifi ed as navigational databases because programs had to navigate
through the data.

 Ted Codd, a researcher at IBM, thought the navigational approach was wrong-
headed. He recalled that people didn’t write programs when dealing with the old
punch card databases. Instead, they set up data fl ows through series of punch card
machines that would perform simple functions like copy or sort. Once the card
machines were set up, you just pushed all the cards through to get your results.
In his view, users should only declare the type of data they were looking for and
leave it up to computers to process it. In 1970, he published a new way to organize
and access data called the relational model. It was based on set theory; data were
independent of the implementation and users described what they were looking
for in a declarative, nonprocedural language.

 Th is paper led to considerable controversy within IBM, because it already had a
database product. Codd even arranged a public debate between him and Bachman,
which led to internal criticism at IBM that Codd was undermining IMS. Th e
good news was that the debate led researchers at IBM and U.C. Berkeley to try to
demonstrate the viability of relational databases by building System R and Ingres.

 System R in 1974–79 demonstrated its feasibility and, perhaps more importantly,
created the Structured Query Language (SQL) that is still widely used today.
However, these results were not suffi cient to convince IBM, and some of the
researchers left IBM to build relational databases for other companies.

 Mike Stonebraker and Gene Wong were interested in geographic data systems,
and in 1973 they decided to pursue relational databases. Rather than build on IBM
mainframes, the Ingres project was built on DEC minicomputers and Unix. Ingres
was important because it led to a company that tried to commercialize the ideas,
because 1000 copies of its source code were openly distributed, and because it
trained a generation of database developers and researchers. Th e code and people
led to many other companies, including Sybase. Larry Ellison started Oracle by
fi rst reading the papers from the System R and Ingres groups and then by hiring
people who worked on those projects. Microsoft later purchased a copy of Sybase
sources that became the foundation of its SQL Server product.

 Relational databases matured in the 1980s, with IBM developing its own
relational databases, including DB2. Th e 1990s saw both the development of
object-oriented databases, to address the impedance mismatch between databases
and programming, and the evolution of parallel databases for analytic processing
and data mining.

 ACM showered awards on this community. Th e ACM Turing Award went to
Charles Bachman in 1973 for his contributions via IDS and the Codasyl group.
Codd won it in 1980 for the relational model. In 1988, the developers of System
R (Donald Chamberlin, Jim Gray, Raymond Lorie, Gianfranco Putzolu, Patricia
Selinger, and Irving Traiger) shared the ACM Systems Soft ware Award with the
developers of Ingres (Gerald Held, Michael Stonebraker, and Eugene Wong). Jim

5.17-12 5.17 Historical Perspective and Further Reading

Gray won the Turing Award in 1998 for his contributions to transaction processing
and databases. Stonebraker won it in 2014 for contributions to the concepts
and practices underlying modern database systems. Finally, the fi rst two ACM
SIGMOD Innovations Awards went to Stonebraker and Gray, and the 2002 and
2003 editions went to Selinger and Chamberlin.

 RAID
 Th e small-form-factor hard disks for PCs in the mid-1980s led a group at Berkeley
to propose redundant arrays of inexpensive disks (RAID). Th is group had worked
on the reduced instruction set computer eff ort and so expected much faster
processors to become available. Th eir two questions were: What could be done
with the small disks that accompanied their PCs? What could be done in the area
of I/O to keep up with much faster processors? Th ey argued to replace one large
mainframe drive with 50 small drives, as you could get much greater performance
with that many independent arms. Th e many small drives even off ered savings in
power consumption and fl oor space.

 Th e downside of many disks was much lower MTTF. Hence, on their own they
reasoned out the advantages of redundant disks and rotating parity to address how
to get greater performance with many small drives yet have reliability as high as
that of a single mainframe disk.

 Th e problem they experienced when explaining their ideas was that some
researchers had heard of disk arrays with some form of redundancy, and they didn’t
understand the Berkeley proposal. Hence, the fi rst RAID paper [Patterson, Gibson,
and Katz 1987] is not only a case for arrays of small-form-factor disk drives, but
also something of a tutorial and classifi cation of existing work on disk arrays.
Mirroring (RAID 1) had long been used in fault-tolerant computers such as those
sold by Tandem. Th inking Machines had arrays with 32 data disks and seven check
disks using ECC for correction (RAID 2) in 1987, and Honeywell Bull had a RAID
2 product even earlier. Also, disk arrays with a single parity disk had been used in
scientifi c computers in the same time frame (RAID 3). Th eir paper then described
a single parity disk with support for sector accesses (RAID 4) and rotated parity
(RAID 5). Chen et al. [1994] survey the original RAID ideas, commercial products,
and other developments.

 Unknown to the Berkeley group, engineers at IBM working on the AS/400
computer also came up with rotated parity to give greater reliability for a collection of
large disks. IBM fi led a patent on RAID 5 shortly before the Berkeley group submitted
their paper. Patents for RAID 1, RAID 2, and RAID 3 from several companies predate
the IBM RAID 5 patent, which has led to plenty of courtroom action.

 EMC had been a supplier of DRAM boards for IBM computers, but around 1988
new policies from IBM made it nearly impossible for EMC to continue to sell IBM
memory boards. Th e Berkeley paper crossed the desks of EMC executives, and so
they decided to go aft er the market dominated by IBM disk storage products. As
the paper advocated, their model was to use many small drives to compete with
mainframe drives, and EMC announced a RAID product in 1990. It relied on

 5.17 Historical Perspective and Further Reading 5.17-13

mirroring (RAID 1) for reliability; RAID 5 products came much later for EMC.
Over the next year, Micropolis off ered a RAID 3 product; Compaq off ered a RAID
4 product; and Data General, IBM, and NCR off ered RAID 5 products.

 Th e RAID ideas soon spread to the rest of the workstation and server industry.
An article explaining RAID in Byte magazine led to RAID products being off ered
on desktop PCs, which was something of a surprise to the Berkeley group. Th ey
had focused on performance with good availability, but higher availability was
attractive to the PC market.

 Another surprise was the cost of the disk arrays. With redundant power supplies
and fans, the ability to “hot-swap” a disk drive, the RAID hardware controller itself,
the redundant disks, and so on, the fi rst disk arrays cost many times the cost of the
disks. Perhaps as a result, the “inexpensive” in RAID morphed into “independent.”
Many marketing departments and technical writers today know of RAID only as
“redundant arrays of independent disks.”

 In 2004, more than 80% of the nondesktop drive sales were found in RAIDs. In
recognition of their role, in 1999 Garth Gibson, Randy Katz, and David Patterson
received the IEEE Reynold B. Johnson Information Storage Award “for the
development of Redundant Arrays of Inexpensive Disks (RAID).”

 Protection Mechanisms
 Architectural support for protection has varied greatly over the past 20 years. In early
computers, before virtual memory, protection was very simple at best. In the 1960s,
more sophisticated mechanisms that supported diff erent protection levels (called
 rings) were invented. In the late 1970s and early 1980s, very elaborate mechanisms
for protection were devised and later built; these mechanisms supported a variety
of powerful protection schemes that allowed controlled instances of sharing, in
such a way that a process could share data while controlling exactly what was done
to the data. Th e most powerful method, called capabilities , created a data object that
described the access rights to some portion of memory. Th ese capabilities could
then be passed to other processes, thus granting access to the object described by the
capability. Supporting this sophisticated protection mechanism was both complex
and costly, because creation, copying, and manipulation of capabilities required
a combination of operating system and hardware support. Recent computers all
support a simpler protection scheme based on virtual memory, similar to that
discussed in Section 5.7. Given current concerns about computer security due to
the costs of worms and viruses, perhaps we will see a renaissance in protection
research, potentially renewing interest in 20-year-old publications.

 As mentioned in the text, system virtual machines were pioneered at IBM as part
of its investigation into virtual memory. IBM’s fi rst computer with virtual memory
was the IBM 360/67, introduced in 1967. IBM researchers wrote the program CP-
67, which created the illusion of several independent 360 computers. Th ey then
wrote an interactive, single-user operating system called CMS that ran on these
virtual machines. CP-67 led to the product VM/370, and today IBM sells z/VM for
its mainframe computers.

5.17-14 5.17 Historical Perspective and Further Reading

 A Brief History of Modern Operating Systems
 MIT developed the fi rst timesharing system, CTSS (Compatible Time-Sharing
System), in 1961. John McCarthy is generally given credit for the idea of timesharing,
but Fernando Corbato was the systems person who realized the concept in the
form of the CTSS. CTSS allowed three people to share a machine, and its response
time of minutes or seconds was a dramatic improvement over the batch processing
system it replaced. Moreover, it demonstrated the value of interactive computing.

 Flush with the success of their fi rst system, this group launched into their second
system, MULTICS (Multiplexed Information and Computing Service). Th ey
included many innovations, such as strong protection, controlled sharing, and
dynamic libraries. However, it suff ered from the “second system eff ect.” Fred Brooks,
Jr. described the second system eff ect in his classic book about lessons learned from
developing an operating system for the IBM mainframe, Th e Mythical Man Month:

 When one is designing the successor to a relatively small, elegant, and successful
system, there is a tendency to become grandiose in one’s success and design an
elephantine feature-laden monstrosity.

 MULTICS took sharing to a logical extreme to discover the issues, including that
it was too extreme. MIT, General Electric, and later Bell Labs all tried to build an
economical and useful system. Despite a great deal of time and money, they failed.

 UC Berkeley was building its own timesharing system, Cal TSS. (“Cal” is a
nickname for University of California.) Th e people leading that project included
Peter Deutsch, Butler Lampson, Chuck Th acker, and Ken Th ompson. Th ey added
paging virtual memory hardware to an SDS 920 and wrote an operating system
for it. SDS sold this computer as the SDS-930, and it was the fi rst commercially
available timesharing system to have operational hardware and soft ware.
Th ompson graduated and joined Bell Labs. Th e others founded Berkeley Computer
Corporation (BCC), with the goal of selling time-sharing hardware and soft ware.
We’ll pick up BCC later in the story, but for now let’s follow Th ompson.

 At Bell Labs in 1971, Th ompson led the development of a simple timesharing
system that had some of the good ideas of MULTICS but left out many of the
complex features. To demonstrate the contrast, it was fi rst called UNICS. As they
were joined by others at Bell Labs who had been burned from the MULTICS
experience, it was renamed UNIX, with the x coming from Phoenix, the legendary
bird that rose from the ashes.

 Th eir result was the most elegant operating system ever built. Forced to live in
the 16-bit address space of the DEC minicomputers, it had an amazing amount
of functionality per line of code. Major contributions were pipes, a uniform fi le
system, a uniform process model, and the shell user interface that allowed users to
connect programs together using pipes and fi les.

 Dennis Ritchie joined the UNIX team in 1973 from MIT, where he had
experience in MULTICS, which was written in a high-level language. Like prior
operating systems, UNIX had been written in assembly language. Ritchie designed
a language for system implementation called C, and it was used to make UNIX
portable.

 5.17 Historical Perspective and Further Reading 5.17-15

 Between 1971 and 1976, Bell released six editions of the UNIX timesharing
system. Th ompson took a sabbatical at his alma mater and brought UNIX with
him. Berkeley and many other universities began to use UNIX on the popular
PDP-11 minicomputer.

 When DEC announced the VAX, a 32-bit virtual address successor to the PDP-
11, the question arose as to what operating system should be run. UNIX became
the fi rst operating system to be migrated to a diff erent computer when it was ported
to the VAX.

 Students at Berkeley had one of the fi rst VAXes, and they were soon adding
features to UNIX for the VAX, such as paging and a very effi cient implementation
of the TCP/IP protocol. Th e Berkeley implementation of TCP/IP was notable not
just because it was fast. It was essentially the only implementation of TCP/IP for
years, since early implementations in most other operating systems consisted of
copying the Berkeley code verbatim, with minimal changes to integrate into the
local system.

 Th e Advanced Research Project Agency (ARPA), which funded computer
science research, asked a Stanford professor, Forrest Basket, to recommend which
system the academic community should use: the DEC operating system VMS,
led by David Cutler, or the Berkeley version of UNIX, led by a graduate student
named Bill Joy. He recommended the latter, and Berkeley UNIX soon became the
academic standard bearer.

 Th e Berkeley Soft ware Distribution (BSD) of UNIX, fi rst released in 1978, was
essentially one of the fi rst open source movements. Th e sources were shipped with
the tapes, and systems developers around the world learned their craft by studying
the UNIX code.

 BSD was also the fi rst split of UNIX, because AT&T Bell Labs continued to
develop UNIX on its own. Th is eventually led to a forest of UNIXes, as each
company compiled the UNIX source code for their architecture. Bill Joy graduated
from Berkeley and helped found Sun Microsystems, so naturally Sun OS was based
on BSD UNIX. Among the many UNIX fl avors were Santa Cruz Operation UNIX,
HP-UX, and IBM’s AIX. AT&T and Sun attempted to unify UNIX by striking a
deal whereby AT&T and Sun would combine forces and jointly develop AT&T
UNIX. Th is led to an adverse reaction from HP, IBM, and others, because they
did not want a competitor supplying their code, so they created the Open Source
Foundation as a competing organization.

 In addition to the UNIX variants from companies, public domain versions also
proliferated. Th e BSD team at Berkeley rewrote substantial portions of UNIX so
that they could distribute it without needing a license from AT&T. Th is eventually
led to a lawsuit, which Berkeley won. BSD UNIX soon split into FreeBSD, NetBSD,
and OpenBSD, provided by competing camps of developers. Apple’s current
operating system, OS X, is based on Free BSD.

 Let’s go back to Berkeley Computer Corporation. Alas, this eff ort was not
commercially viable. About the same time as BCC was getting in trouble, Xerox hired
Robert Taylor to build the computer science division of the new Xerox Palo Alto

5.17-16 5.17 Historical Perspective and Further Reading

Research Center (PARC) in 1970. He had just returned from a tour of duty at ARPA,
where he had funded the Berkeley research. He recruited Deutsch, Lampson, and
Th acker from BCC to form the core of PARC’s team: 11 of the initial 20 employees
were from BCC, and they decided to build small computers for individuals rather
than large computers for groups. Th is fi rst personal computer, called the Alto, was
built from the same technology as minicomputers, but it had a keyboard, mouse,
graphical display, and windows. It popularized windows and led to many inventions,
including client-server computing, the Ethernet, and print servers. It directly inspired
the Macintosh, which was the successor to the popular Apple II.

 IBM had long been interested in selling to the home, so the success of the Apple
II led IBM to start a competing project. In contrast to its tradition, for this project
IBM designed everything from components outside of the company. Th ey selected
the new 16-bit microprocessor from Intel, the 8086. (To lower costs, they started
with the version with the 8-bit bus, called the 8088.) Th ey visited Microsoft to
see if this small company would be willing to sell their popular Basic interpreter
and asked for recommendations for an operating system. Gates volunteered that
Microsoft could deliver both an interpreter and an operating system, as long as they
were paid a royalty fee of between $10 and $50 for each copy rather than a fl at fee.
IBM agreed, provided Microsoft could meet their deadlines. Microsoft didn’t have
an operating system, nor the time and resources to build one, but Gates knew that
a Seattle company had developed an operating system for the Intel 8086. Microsoft
purchased QDOS (Quick and Dirty Operating System) for $15,000, made a small
change and relabeled it MS-DOS. MS-DOS was a simple operating system without
any modern features—no protection, no processes, and no virtual memory—in
part because they believed it wasn’t necessary for a personal computer.

 Announced in 1980, the IBM PC became a tremendous success for IBM and the
companies it relied upon. Microsoft sold 500,000 copies of MS-DOS by 1983, and
the $10 million income allowed Microsoft to start new soft ware projects.

 Aft er seeing a version of the Macintosh under development, Microsoft hired
some people from PARC to lead its reply. Th e Macintosh was announced in
1984, and Windows was available on PCs the following year. It was originally
an application that ran on top of DOS, but was later integrated with DOS and
renamed Windows 2.0. Microsoft hired Cutler from DEC to lead the development
of Windows NT, a new operating system. NT was a modern operating system with
protection, processors, and so on and has much in common with DEC’s VMS.
Today’s PC operating systems are more sophisticated than any of the timesharing
systems of 20 years ago, yet they still suff er from the need to maintain compatibility
with the crippled fi rst PC operating systems such as MS-DOS.

 Th e popularity of the PC led to a desire for a UNIX that ran on it. Many tried
to develop one, but the most successful was written from scratch in 1991 by Linus
Torvalds. In addition to making the source code available, like BSD, he allowed
everyone to make changes and submit them for inclusion in his next release. Linux
popularized open source development as we know it today, with such soft ware
getting hundreds of volunteers to test releases and add new features.

 5.17 Historical Perspective and Further Reading 5.17-17

 Many people in this story won awards for their roles in the development of
modern operating systems. McCarthy received an ACM Turing Award in 1971 in
part for his contributions to timesharing. In 1983, Th ompson and Ritchie received
one for UNIX. Th e announcement said that “the genius of the UNIX system is its
framework, which enables programmers to stand on the work of others.” In 1990,
Corbato received the Turing Award for his contributions to CTSS and MULTICS.
Two years later, Lampson won it in part for his work on personal computing and
operating systems.

 Further Reading

 Brooks , F. P. [1975]. Th e mythical man-month . Reading : Addison-Wesley .

 Th e classic book that explains the challenge of soft ware engineering using IBM OS development as the example.

 Cantin , J. F. and M. D. Hill [2001]. “ Cache performance for selected SPEC CPU2000 benchmarks ” , SIGARCH
Computer Architecture News 29 : 4 þ (September), 13–18 .

 A reference paper of cache miss rates for many cache sizes for the SPEC2000 benchmarks.

 Chen , P. M. , E. K. Lee , G. A. Gibson , R. H. Katz , and D. A. Patterson [1994]. “ RAID: High-performance,
reliable secondary storage ” , ACM Computing Surveys 26 : 2 (June) 145–88 .

 A tutorial covering disk arrays and the advantages of such an organization.

 Conti , C. , D. H. Gibson , and S. H. Pitowsky [1968]. “ Structural aspects of the System/360 Model 85, part I:
General organization ” , IBM Systems J. 7 : 1 , 2 – 14 .

 A classic paper that describes the fi rst commercial computer to use a cache and its resulting performance.

 Hennessy, J. and D. Patterson [2003]. Chapter 5 in Computer Architecture: A Quantitative Approach , third
edition, Morgan Kaufmann Publishers, San Francisco.

 For more in-depth coverage of a variety of topics including protection, cache performance of out-of-order
processors, virtually addressed caches, multilevel caches, compiler optimizations, additional latency tolerance
mechanisms, and cache coherency.

 Kilburn , T. , D. B. G. Edwards , M. J. Lanigan , and F. H. Sumner [1962]. “ One-level storage system ” , IRE
Transactions on Electronic Computers EC-11 (April) , 223 – 335 . Also appears in D. P. Siewiorek, C. G. Bell, and
A. Newell [1982], Computer Structures: Principles and Examples , McGraw-Hill, New York, 135–48 .

 Th is classic paper is the fi rst proposal for virtual memory.

 LaMarca , A. and R. E. Ladner [1996]. “ Th e infl uence of caches on the performance of heaps ” , ACM J. of
Experimental Algorithmics , Vol. 1 .

 Th is paper shows the diff erence between complexity analysis of an algorithm, instruction count performance,
and memory hierarchy for four sorting algorithms.

 McCalpin, J.D. [1995]. “ STREAM: Sustainable Memory Bandwidth in High Performance Computers ”, https://
www.cs.virginia.edu/stream/ .

 A widely used microbenchmark that measures the performance of the memory system behind the caches.

 Patterson , D. , G. Gibson , and R. Katz [1988]. “ A case for redundant arrays of inexpensive disks (RAID) ” ,
 SIGMOD Conference , 109 – 116 .

 A classic paper that advocates arrays of smaller disks and introduces RAID levels.

5.17-18 5.17 Historical Perspective and Further Reading

 Przybylski , S. A. [1990]. Cache and Memory Hierarchy Design: A Performance-Directed Approach , Morgan
Kaufmann Publishers , San Francisco .

 A thorough exploration of multilevel memory hierarchies and their performance.

 Ritchie , D. [1984]. “ Th e evolution of the UNIX time-sharing system ” , AT&T Bell Laboratories Technical
Journal 1984 , 1577 – 1593 .

 Th e history of UNIX from one of its inventors.

 Ritchie , D. M. and K. Th ompson [1978]. “ Th e UNIX time-sharing system ” , Bell System Technical Journal
(August) , 1991 – 2019 .

 A paper describing the most elegant operating system ever invented.

 Silberschatz , A. , P. Galvin , and G. Grange [2003]. Operating System Concepts , sixth edition , Addison-Wesley,
Reading , MA .

 An operating systems textbook with a thorough discussion of virtual memory, processes and process management,
and protection issues.

 Smith , A. J. [1982]. “ Cache memories , ” Computing Surveys 14 : 3 (September), 473–530 .

 Th e classic survey paper on caches. Th is paper defi ned the terminology for the fi eld and has served as a reference
for many computer designers.

 Smith , D. K. and R. C. Alexander [1988]. Fumbling the Future: How Xerox Invented, Th en Ignored, the First
Personal Computer , Morrow , New York .

 A popular book that explains the role of Xerox PARC in laying the foundation for today’s computing, but which
Xerox did not substantially benefi t from.

 Tanenbaum , A. [2001]. Modern Operating Systems , second edition , Upper Saddle River , Prentice Hall, NJ .

 An operating system textbook with a good discussion of virtual memory.

 Wilkes , M. [1965]. “ Slave memories and dynamic storage allocation ” , IEEE Trans. Electronic Computers
 EC-14 : 2 (April), 270–71 .

 Th e fi rst classic paper on caches.

